Photosynthetic adaptation to length of day is dependent on S-sulfocysteine synthase activity in the thylakoid lumen.

نویسندگان

  • María Ángeles Bermúdez
  • Jeroni Galmés
  • Inmaculada Moreno
  • Philip M Mullineaux
  • Cecilia Gotor
  • Luis C Romero
چکیده

Arabidopsis (Arabidopsis thaliana) chloroplasts contain two O-acetyl-serine(thiol)lyase (OASTL) homologs, OAS-B, which is an authentic OASTL, and CS26, which has S-sulfocysteine synthase activity. In contrast with OAS-B, the loss of CS26 function resulted in dramatic phenotypic changes, which were dependent on the light treatment. We have performed a detailed characterization of the photosynthetic and chlorophyll fluorescence parameters in cs26 plants compared with those of wild-type plants under short-day growth conditions (SD) and long-day growth conditions (LD). Under LD, the photosynthetic characterization, which was based on substomatal CO(2) concentrations and CO(2) concentration in the chloroplast curves, revealed significant reductions in most of the photosynthetic parameters for cs26, which were unchanged under SD. These parameters included net CO(2) assimilation rate, mesophyll conductance, and mitochondrial respiration at darkness. The analysis also showed that cs26 under LD required more absorbed quanta per driven electron flux and fixed CO(2). The nonphotochemical quenching values suggested that in cs26 plants, the excess electrons that are not used in photochemical reactions may form reactive oxygen species. A photoinhibitory effect was confirmed by the background fluorescence signal values under LD and SD, which were higher in young leaves compared with mature ones under SD. To hypothesize the role of CS26 in relation to the photosynthetic machinery, we addressed its location inside of the chloroplast. The activity determination and localization analyses that were performed using immunoblotting indicated the presence of an active CS26 enzyme exclusively in the thylakoid lumen. This finding was reinforced by the observation of marked alterations in many lumenal proteins in the cs26 mutant compared with the wild type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosynthetic Adaptation to Length of Day Is Dependent on S-Sulfocysteine Synthase Activity in the Thylakoid Lumen1[W]

Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (M.Á.B., I.M., C.G., L.C.R.); Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Universitat de les Illes Balears, 07122 Palma, Spain (J.G.); and School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom ...

متن کامل

Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control.

In bacteria, the biosynthesis of Cys is accomplished by two enzymes that are encoded by the cysK and cysM genes. CysM is also able to use thiosulfate as a substrate to produce S-sulfocysteine. In plant cells, the biosynthesis of Cys occurs in the cytosol, mitochondria, and chloroplasts. Chloroplasts contain two O-acetylserine(thiol)lyase homologs, which are encoded by the OAS-B and CS26 genes i...

متن کامل

Chloroplast ATP Synthase Modulation of the Thylakoid Proton Motive Force: Implications for Photosystem I and Photosystem II Photoprotection

In wild type plants, decreasing CO2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf). The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b6f complex. Here, we show that the cfq muta...

متن کامل

A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana.

Plants adjust their photosynthetic activity to changing light conditions. A central regulation of photosynthesis depends on the xanthophyll cycle, in which the carotenoid violaxanthin is converted into zeaxanthin in strong light, thus activating the dissipation of the excess absorbed energy as heat and the scavenging of reactive oxygen species. Violaxanthin deepoxidase (VDE), the enzyme respons...

متن کامل

Ion antiport accelerates photosynthetic acclimation in fluctuating light environments

Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K(+) efflux antiporter (KEA3) is critical for high photosynthetic efficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 160 1  شماره 

صفحات  -

تاریخ انتشار 2012